Бастауыш математика
Жоспар
Кіріспе
I Шамалардың және сандардың қатынасы
1.1 Шамалардың қатынасы, сандардың қатынасы
1.2 Қатынас мүшелерінің қасиеттері, кері қатынастар
II Бастауыш математика курсында қатынастарды оқыту
2.1 Қатынас ұғымы. Қатынастың қасиеттері
2.2 Сәйкестік туралы ұғым
Қорытынды
Әдебиеттер
Кіріспе
Математикада тек қана обьектілер емес (сан, фигура, шама т.с) олардың арасындағы қатынастар, байланыстар да зерттеледі. Натурал сан ұғымын қалыптастыру - бастауыш математика курсының негізгі ұғымы және жалпы математика сандар арасындағы әртүрлі өзара байланысты зерттей отырып дамиды.
Геометрияда түзулердің параллельдік, перпендикулярлық, фигуралардың теңдік, ұқсастық т.с.с. геометриялық обьектілердің арасындағы әр түрлі қатынастарды зерттейді.
Жиындарды салыстырып, олар қиылысады немесе тең, біреуі екіншісіне тиісті, т.с.с. яғни жиындар арасында да қатынастар орнатылады.
Сандардың, геометриялық фигуралардың, жиындардың және басқа да обьектілердің арасындағы белгілі бір қатыстар туралы біле отырып, оларда қандай ортақ қасиет бар екенін, әртүрлі қатыстардың жиынын қалай классификациялауға болатынын қарастырамыз.
І. Шамалардың және сандардың қатынасы.
1.1 Шамалардың қатынасы, сандардың қатынасы.
Бір текті екі шаманың қатынасы деп бір шаманың екінші шамадан неше есе артық екендігін немесе ол, осы екінші шаманың қандай бөлігі екендігін көрсететін санды атайды. Мысалы; 4 километрдің 2 километрге қатынасы 2-ге тең, ал 20 сантиметрдің 1 метрге қатынасы 0,2-ге тең.
Бірінші жағдайда қатынас бір текті екі шаманың біреуі (4 км) екіншісінен (2 км-ден) неше есе артық екендігін көрсетеді, ал екінші жағдайда 0,2 қатынасы бірінші шама (20 см) екінші шаманың (1 л/-дің) қандай бөлігі екендігін көрсетеді.
Бұл анықтамаға карағанда бір текті шамалардың қатынасы дерексіз сан екендігі көрінеді.
Әдетте шамалардың орнына олардың сан мәндері алынады. Бұдан қашан болса да шамалардың қатынасының орнына осы шамалардың мәндерін көрсететін сандардың қатынасын алуға болады деп қорытынды шығаруға болады.
Сандардың қатынасы
Сандарды бөлуді қарастырғанымызда біз екі санның қатынасы бір санды екіншісіне бөлгенде шығатын бөлінді екендігін тағайындаған едік. Бөлшектерді енгізуге байланысты бөлуді барлық жағдайларда (әрине, бөлуден басқаларында) орындауға мүмкіншілік туды.
Олай болса, екі санның арасындағы қатынасты анықтау дегеніміз бірінші сан екінші саннан неше есе артық екендігін немесе бірінші сан екіншінің қандай бөлігі екендігін білу деген сөз деп айтуға болады.
Екі санның қатынасы (бөлінді) бірге тең болса, онда бұл - осы екі санның тең екендігін көрсетеді; егер қатынас бірден үлкен болса, онда ол - бірінші сан екінші саннан неше есе артық екендігін көрсетеді, егер қатынас бірден кіші болса, онда ол - бірінші сан екіншінің қандай бөлігі екендігін көрсетеді.
Жоғарыда айтылған анықтамадан, берілген а мен а сандарының b қатынасы, оны q-ға көбейткенде а шығатын сан деп айтуымызға болады.
Әдетте қатынас былай жазылады: a:b=q; a саны қатынастың алдыңғы мүшесі, Ь саны оның жалғас мүшесі, ал - қатынас деп аталады.
Сандарды әріптермен белгілегенде а:Ь жазуы кейде бөлу амалын орындауды емес, бөлудің нәтижесін көрсететінін өскерте кетейік. Осыған сәйкес а:Ь жазуына а санының Ь санына қатынасының белгісі деп карауға болады.